应用反问题中的计算方法 英文版 [王彦飞,(俄罗斯)亚哥拉,杨长春 编著] 2012年版 ,该文件为pdf格式,请用户放心下载!
尊敬的用户你们好,你们的支持是我们前进的动力,网站收集的文件并免费分享都是不容易,如果你觉得本站不错的话,可以收藏并分享给你周围的朋友。
如果你觉得网站不错的话,找不到本网站的话,可以百度、360搜搜,搜狗搜索关键词“文档天下”,就可以找到本网站。也可以保存到浏览器书签里。
收费文件即表明收集不易,也是你们支持,信任本网站的理由!真心非常感谢大家一直以来的理解和支持!
资源简介
应用反问题中的计算方法 英文版
作者:王彦飞,(俄罗斯)亚哥拉,杨长春 编著
出版时间: 2012年版
内容简介
the book covers many directions in the modern theory of inverse and illposed problems: mathematical physics, optimal inverse design, inverse scattering, inverse vibration, biomedical imaging, oceanography, seismic imaging and remote sensing; methods including standard regularization,parallel computing for multidimensional problems, nystr6m method,numerical differentiation, analytic continuation, perturbation regularization,filtering, optimization and sparse solving methods are fully addressed.
目录
preface
editor's preface
introduction
s. i. kabanikhin
inverse problems of mathematical physics
1.1 introduction
1.2 examples of inverse and ill-posed problems
1.3 well-posed and ill-posed problems
1.4 the tikhonov theorem
1.5 the ivanov theorem: quasi-solution
1.6 the lavrentiev's method
1.7 the tikhonov regularization method
references
ii recent advances in regularization theory and methods
2 d. v. lukyanenko and a. g. yagola
using parallel computing for solving multidimensional
ill-posed problems
2.1 introduction
2.2 using parallel computing
2.2.1 main idea of parallel computing
2.2.2 parallel computing limitations
2.3 parallelization of multidimensional ill-posed problem
2.3.1 formulation of the problem and method of solution
2.3.2 finite-difference approximation of the functional and its gradient
2.3.3 parallelization of the minimization problem
2.4 some examples of calculations
2.5 conclusions
references
3 m. t. nair
regularization of fredholm integral equations of the first
kind using nystrom approximation
3.1 introduction
3.2 nystrsm method for regularized equations
3.2.1 nystrsm approximation of integral operators
3.2.2 approximation of regularized equation
3.2.3 solvability of approximate regularized equation
3.2.4 method of numerical solution
3.3 error estimates
3.3.1 some preparatory results
3.3.2 error estimate with respect to
3.3.3 error estimate with respect to
3.3.4 a modified method
3.4 conclusion
references
4 t. y. xiao, h. zhang and l. l. hao
regularization of numerical differentiation: methods and
applications
4.1 introduction
4.2 regularizing schemes
4.2.1 basic settings
4.2.2 regularized difference method (rdm)
4.2.3 smoother-based regularization (sbr)
4.2.4 mollifier regularization method (mrm)
4.2.5 tikhonov's variational regularization (tivr)
4.2.6 lavrentiev regularization method (lrm)
4.2.7 discrete regularization method (drm)
4.2.8 semi-discrete tikhonov regularization (sdtr)
4.2.9 total variation regularization (tvr)
4.3 numerical comparisons
4.4 applied examples
4.4.1 simple applied problems
4.4.2 the inverse heat conduct problems (ihcp)
4.4.3 the parameter estimation in new product diffusion model
4.4.4 parameter identification of sturm-liouville operator
4.4.5 the numerical inversion of abel transform
4.4.6 the linear viscoelastic stress analysis
4.5 discussion and conclusion
references
……
作者:王彦飞,(俄罗斯)亚哥拉,杨长春 编著
出版时间: 2012年版
内容简介
the book covers many directions in the modern theory of inverse and illposed problems: mathematical physics, optimal inverse design, inverse scattering, inverse vibration, biomedical imaging, oceanography, seismic imaging and remote sensing; methods including standard regularization,parallel computing for multidimensional problems, nystr6m method,numerical differentiation, analytic continuation, perturbation regularization,filtering, optimization and sparse solving methods are fully addressed.
目录
preface
editor's preface
introduction
s. i. kabanikhin
inverse problems of mathematical physics
1.1 introduction
1.2 examples of inverse and ill-posed problems
1.3 well-posed and ill-posed problems
1.4 the tikhonov theorem
1.5 the ivanov theorem: quasi-solution
1.6 the lavrentiev's method
1.7 the tikhonov regularization method
references
ii recent advances in regularization theory and methods
2 d. v. lukyanenko and a. g. yagola
using parallel computing for solving multidimensional
ill-posed problems
2.1 introduction
2.2 using parallel computing
2.2.1 main idea of parallel computing
2.2.2 parallel computing limitations
2.3 parallelization of multidimensional ill-posed problem
2.3.1 formulation of the problem and method of solution
2.3.2 finite-difference approximation of the functional and its gradient
2.3.3 parallelization of the minimization problem
2.4 some examples of calculations
2.5 conclusions
references
3 m. t. nair
regularization of fredholm integral equations of the first
kind using nystrom approximation
3.1 introduction
3.2 nystrsm method for regularized equations
3.2.1 nystrsm approximation of integral operators
3.2.2 approximation of regularized equation
3.2.3 solvability of approximate regularized equation
3.2.4 method of numerical solution
3.3 error estimates
3.3.1 some preparatory results
3.3.2 error estimate with respect to
3.3.3 error estimate with respect to
3.3.4 a modified method
3.4 conclusion
references
4 t. y. xiao, h. zhang and l. l. hao
regularization of numerical differentiation: methods and
applications
4.1 introduction
4.2 regularizing schemes
4.2.1 basic settings
4.2.2 regularized difference method (rdm)
4.2.3 smoother-based regularization (sbr)
4.2.4 mollifier regularization method (mrm)
4.2.5 tikhonov's variational regularization (tivr)
4.2.6 lavrentiev regularization method (lrm)
4.2.7 discrete regularization method (drm)
4.2.8 semi-discrete tikhonov regularization (sdtr)
4.2.9 total variation regularization (tvr)
4.3 numerical comparisons
4.4 applied examples
4.4.1 simple applied problems
4.4.2 the inverse heat conduct problems (ihcp)
4.4.3 the parameter estimation in new product diffusion model
4.4.4 parameter identification of sturm-liouville operator
4.4.5 the numerical inversion of abel transform
4.4.6 the linear viscoelastic stress analysis
4.5 discussion and conclusion
references
……
评论